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Abstract The design and development of antioxidant mol-
ecules have lately gained a great deal of focus which is
attributed to their immense biomedicinal importance in
combating the free radical associated health hazards. In a
situation to replenish the endogenous antioxidant loss, syn-
thetic molecules with potent antioxidant activity is
demanded. The present work thus aims at in silico modeling
of antioxidant molecules that may facilitate in searching and
designing of new chemical entities with enhanced activity
profile. A series of cinnamic acid and caffeic acid deriva-
tives having the ability to inhibit lipid peroxidation have
been modeled in the present work. Three different types of
models were developed using different chemometric and
cheminformatics tools to identify the essential structural
attributes: (a) descriptor based QSAR models, (b) 3D phar-
macophore models and (c) HQSAR (hologram QSAR)
models. For the conventional QSAR modeling, descriptors
belonging to different categories [quantum chemical
descriptors (Mulliken charges of the common atoms of the
molecules), thermodynamic descriptors, electronic descrip-
tors, structural descriptors and spatial descriptors] were cal-
culated for the development of statistically significant as

well as well interpretable quantitative structure-activity re-
lationship (QSAR) models. Two different chemometric
tools [genetic function approximation (GFA) and genetic
partial least squares (G/PLS)] were employed for the devel-
opment of the QSAR models. The 3D pharmacophore mod-
el focused on the essential pharmacophoric features while
the HQSAR model implicated the prime structural frag-
ments that were necessitated for the optimal anti-lipid per-
oxidative activity of the molecules. All the models were
validated based on internal, external and overall validation
statistics. Randomization was performed in order to ensure
the absence of chance correlation in the developed models.
Among all models, the descriptor-based model developed
using the GFA-spline technique yielded the most satisfacto-
ry results. The results obtained from all the models corrob-
orate well with each other and chiefly signify the importance
of the ketonic oxygen of the amide/ acid fragment and the
ethereal oxygen substituted on the parent phenyl ring of the
molecules under study. Thus the models can efficiently be
utilized for extensive screening of large datasets and their
subsequent activity prediction.
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Introduction

Free radicals are chemically reactive species having unpaired
molecules, which play an important role in a number of vital
life processes like intracellular killing of bacteria by phago-
cytic cells such as granulocytes and macrophages. They have
also proved to be essential in certain cell signaling processes
[1]. However, when produced in large excess they participate
in a series of unwanted side reactions resulting in cell damage.
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Free radical overload within the system leads to a condition of
oxidative stress which can be implicated as the prime causa-
tive reason for most life threatening diseases. Free radicals are
produced in cells by cellular metabolism and/or induction of
exogenous agents. These free radicals damage biomolecules
especially DNA involving hydrogen abstractions and addition
reactions leading to carbon-centered sugar radicals and OH- or
H-adduct radicals of heterocyclic bases [2]. Such oxidative
damage to DNAmay in turn lead to carcinogenesis, aging and
can even result in detrimental biological consequences such as
the initiation and promotion of cancer [3, 4]. Besides these,
trace amounts of copper and iron present within the human
system further catalyse free radical reactions aggravating their
deleterious effects. Reactive oxygen free radical species
(ROS) have also been implicated in the pathogenesis of de-
generative joint disease [5] and exert the potential to initiate
cellular damage to joint tissues [6]. The ROS oxidatively
modify lipids and proteins with deleterious consequences for
vascular function and lipid peroxidation. Such dysfunctional
vasculature is characterized by lipid peroxidation and aberrant
lipid deposition followed by inflammation, thrombus forma-
tion, disturbed hemodynamic flow etc. [7].

In vivo attenuation of the oxidative modification of lip-
oproteins by natural and synthetic antioxidants is considered
as a possible way of combating oxidative stress related
diseases. The free radicals are regulated by a balance be-
tween tissue oxidant and antioxidant activity [8]. The en-
dogenous antioxidant system includes albumin, uric acid,
total bilirubin and endogenous enzymes like superoxide
dismutase, catalase and glutathione peroxidase. An imbal-
ance in the oxidant-antioxidant reaction either due to excess
free radical formation or insufficient removal by antioxi-
dants leads to oxidative stress. Thus to balance the overall
antioxidant status of the human body, dietary antioxidant
supplementation becomes essential. They have a positive
effect on the general health as well as on mortality associ-
ated with cardiovascular diseases and cancer [9–11]. To
cope with the systemic demand for antioxidants, several
synthetic antioxidants are also being marketed. Viewing
the immense biomedicinal importance of these molecules,
design and synthesis of such chemical entities with im-
proved potency have gained remarkable attention over the
last few decades. Such designing of active chemical com-
pounds employing a time effective approach involves the
incorporation of QSAR methodology [12]. The QSAR tech-
nique aims to determine a mathematical correlation between
biological activity of the molecules and their structure
through the utilization of descriptors. These descriptors are
the numerical representation of molecular properties, atomic
fragments, topology, spatial features etc. [13]. Development
of QSAR models enables preliminary screening of data-
bases for selection of optimally active molecules. Thus,
the QSAR technique extensively reduces the time and cost

involved in synthesizing and analyzing all the available
molecules in the databases.

Several researchers have utilized the QSAR technique as
an efficient tool in the field of rational drug design. Among
the varied types of molecules with different therapeutic
activity data screened using this QSAR tool, research related
to the design and development of antioxidant molecules
with improved activity profile have been undertaken by
different groups of authors. Worachartcheewan et al. [14]
predicted the DPPH (2,2-diphenyl-1-picrylhydrazyl) free
radical scavenging activity of curcumin derivatives by
performing both classification and QSAR analyses and con-
cluded that compounds having high chemical stability to-
gether with low dipole moments and higher number of
hydroxyl groups could be ranked as potent free radical
scavengers. Li et al. [15] reported a QSAR study of antiox-
idative peptides containing either histidine or tyrosine resi-
due. Partial least squares (PLS) analysis performed by the
authors revealed the importance of the central amino acid
and the N-terminal amino acids over the C-terminal amino
acid for antioxidative action of the tripeptides. A series of
morpholine derivatives were studied by Nikitakis et al. [16]
for their antioxidant and squalene synthase inhibitory activ-
ity based on the development of significant QSAR models
suggesting that electron affinity along with molecular shape
and electrostatic effects played a significant role, which
provided some insight on the molecular mechanism of ac-
tion of these derivatives. With easy accessibility of software,
the QSAR methodology has been extrapolated to the task of
determining the molecular pharmacophores and structural
features responsible for their antioxidant activity profile
through the development of 3D-pharmacophore models
and comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoM-
SIA) techniques [17, 18]. Further, importance of the differ-
ent molecular fragments for the overall activity profile of the
molecules can also be assessed using the HQSAR and group
based QSAR (G-QSAR) methodologies [17]. Such multidi-
mensional analysis has been recently reported by our group
[17] which involves the development of multiple QSAR
models (developed using different techniques like 3D phar-
macophore mapping, CoMSIA, HQSAR, and G-QSAR) for
consensus predictions and unified mechanistic interpreta-
tions of the free-radical scavenging activities of chromone
derivatives. Besides these, essential pharmacophoric fea-
tures for the free radical scavenging activity of the
arylamino-substituted benzo[b]thiophenes have also been
assessed by our group [18]. The vivid importance of anti-
oxidant molecules in maintaining the normal physiological
function has oriented our research toward detecting new
chemicals with enhanced antioxidant activity which may
be exhibited either by their free radical scavenging activity
or by their anti-lipid peroxidative activity. The present work
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deals with derivatives of cinnamic acid and caffeic acids,
which were modeled for their ability to inhibit lipid perox-
idation within the biological system. The essential molecu-
lar attributes contributing to the activity profile of the
molecules were determined based on different QSAR mod-
els developed using various chemometric tools like GFA
and G/PLS. Additionally, the pharmacophore and crucial
molecular fragments of the compounds were also deter-
mined based on 3D pharmacophore mapping and HQSAR
techniques.

Materials and methods

Dataset selection

The model dataset used for the present work was obtained by
clubbing three different datasets reported by Jung et al. [19],
Kang et al. [20] and Rajan et al. [21]. The dataset reported by
Jung et al. [19] comprised of a series of 4-hydroxyphenylacetic
acid amides and 4-hydroxycinnamides with the ability to in-
hibit lipid peroxidation. The second dataset as reported by
Kang et al. [20] also comprised of a similar series of 4-
hydroxycinnamide derivatives with dialkoxy substitutions
having the potency to inhibit lipid peroxidation. Lastly, a series
of amides of caffeic acids evaluated byRajan et al. [21] as lipid
peroxidation inhibitors was selected as the third dataset. The
data reported in all the papers were estimated using the same
experimental protocol, i.e., inhibition of lipid peroxidation.
The dataset thus used for the present work comprised of
derivatives of 4-hydroxyphenylacetic acid amide [19], 4-
hydroxycinnamide [19, 20] and amides of caffeic acid [21]
having the ability to inhibit lipid peroxidation. For the devel-
opment of the QSAR models and the HQSAR analysis, 50%
inhibitory concentration (IC50) of the molecules was converted
to the negative logarithmic scale (pIC50). For the development
of the pharmacophore models, the dependent variable IC50

(nM) of the molecules was used. All the molecules with their
activity data are summarized in Table 1.

Descriptor calculation for the descriptor based QSAR model

The QSAR analysis was performed based on a series of
descriptors of different categories such as: (a) quantum
chemical descriptors (Mulliken charges of the common
atoms of the molecules), (b) thermodynamic descriptors,
(c) electronic descriptors, (c) structural descriptors and (d)
spatial descriptors. The molecules were prepared using the
Gauss View 3.0 software [22] and the common atoms
(Fig. 1) were marked for the calculation of the Mulliken
atomic charges. Subsequently, the energy minimization of
the molecules was performed using the GAUSSIAN 03W
software [23]. Energy calculation was performed at three

different levels of theory: (i) the semi-empirical AM1 meth-
od (Austin method), (ii) the Hartree–Fock method at HF/3-
21G(d) level and (iii) Hartree–Fock method at HF/6-31G(d)
level [23]. The output from each level was used as the input
for the next level. The charges of the common atoms thus
calculated at each level were then correlated with the lipid
peroxidation inhibitory data of the compounds involved in
this study. Although charges were calculated at three levels
of theory, better correlation statistics were obtained when
models were developed employing the charge descriptors
calculated at the HF/6-31G(d) level compared to the other
two levels. Hence, Mulliken atomic charges calculated at
this level were further utilized for final QSAR model devel-
opment. Besides these, Cerius 2 software version 4.1 [24]
was employed for further calculation of the remaining
descriptors. All the different types of descriptors thus calcu-
lated are detailed in Table 2.

Splitting of the dataset

Selection of training and test sets plays a crucial role in the
development of a QSAR model. The selection should be
such that the test set molecules encompass the activity range
of the total dataset and at the same time lie within the
chemical domain of the training set data. A QSAR model
exhibits poor predictivity for a test set molecule dissimilar
from the training set ones, while molecule appreciably sim-
ilar to the training molecules are ideally predicted. In the
present wok, 25% of the total dataset has been selected as
the test set based on the cluster analysis technique [25, 26]
using SPSS software [27]. This method ensures uniform
selection of the test set bearing molecules covering the
entire range of the chemical space as that of the total dataset.
In order to further ascertain the uniformity in the distribution
of the training and test set molecules, a principal component
analysis (PCA) [27] of the descriptor matrix was performed
using SPSS software [27]. The PCA score plot shows the
distribution of the training and test set compounds in the 3D
space with respect to the first three principal components
obtained from the total descriptor matrix. The obtained plot
(Fig. 2) shows that the test set molecules lie in close prox-
imity to at least one training set compound, ensuring that the
test set thus selected captures all of the essential features of
the entire dataset of molecules.

Model development and validation

Three different types of models were built in the present
work employing the training set molecules: (a) descriptor
based QSAR models, (b) 3D pharmacophore models and (c)
HQSAR model. Different techniques utilized for the devel-
opment of the models are given in Fig. 3. The statistical
fitness and the predictive quality of the developed models
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Table 1 Structures of the 54 molecules under study along with their observed and calculated/predicted lipid peroxidation inhibitory activity data
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Structure 
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R1 R2 Observed 

activity¥

Calculated/ 

Predicted 

activity 

1 A CH3 H 1.587 1.333 

2* A CH2CH3 H 1.621 2.185 

3 A CH(CH3)CH3 H 1.713 1.671 

4* A (CH2)3CH3 H 2.032 2.136 

5 A C6H5 H 1.495 1.679 

6 A CH3 OCH3 1.929 2.205 

7 A H H 2.585 2.395 

8* A H OH 2.742 2.737 

9 B CH3 H 2.003 1.951 

10 B CH3 OCH3 2.467 2.418 

11 B H H 2.955 2.802 

HO

N
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RO

HO

RO

R

OH

O

C D

O

Sl. 

No. 

Structure 

type 

R Observed 

activity¥

Calculated/ 

Predicted 

activity

12 C CH3 1.243 1.437 

13* D CH3 2.321 1.754 

14 D CH2CH2CH2CH3 2.434 2.455 

15 D CH(CH3)(CH2CH2CH3) 2.315 2.459 

16 D CH(CH2CH3)2 2.656 2.440 

17 D (CH2)5CH3 2.650 2.349 

¥ [19–21]

* Compounds selected as the test set compounds
a Activity calculated/predicted based on the best GFA-spline equation [Eq. 3]
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Table 1 (continued)

24 F (CH2)2CH3 2 3.585 3.566 

25 F (CH2)3CH3 1 3.377 3.474 

26 F (CH2)3CH3 2 3.387 3.465 

27* F CH(CH3)(CH2CH2CH3) 1 3.244 3.439 

28* F CH(CH3)(CH2CH2CH3) 2 3.444 3.452 

29 F CH(CH2CH3)2 1 3.086 3.068 

30 F CH(CH2CH3)2 2 3.357 3.262 

31 F (CH2)5CH3 1 2.453 2.602 

32 F (CH2)5CH3 2 2.562 2.441 

HO

R1 N

O

G

R3

R2

Sl. 

No. 

Structure 

type 

R1 R2 R3 Observed 

activity¥

Calculated/ 

Predicted 

activitya

33* G OH H CH2CH=C(CH3)CH3 2.469 2.735 

34 G OH H H 2.658 2.920 

35 G OH H OH 2.678 2.697 

36 G OH H CH3 2.222 2.255 

37 G OH H CH2CH3 2.569 2.725 

38 G OH H CH(CH3)CH3 2.409 2.780 

39* G OH H CH2CH(CH3)CH3 2.658 2.736 

40 G OH H CH2CH2CH(CH3)CH3 2.854 2.755 

41 G OH H -CH2CH=CH2 2.658 2.663 

HO

RO

OR

N
H

O

F

n
tBu

OH

tBu

HO

RO

OR

N
H

O

E

Sl. 

No. 

Structure 

type 

R n Observed 

activity¥ 

Calculated/ 

Predicted 

activity 

18 E CH(CH3)(CH2CH2CH3) - 2.876 3.047 

19 E CH(CH2CH3)2 - 2.762 2.947 

20 E (CH2)5CH3 - 3.538 3.253 

21 F CH3 1 2.836 2.684 

22* F CH3 2 3.161 3.150 

23 F (CH2)2CH3 1 3.569 3.426 
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were assessed based on different internal and external vali-
dation statistics. The QSAR models enable to quantify the
importance of the different molecular properties, arising due
to the variation in substitutional patterns of the molecules,
for their anti-lipid peroxidative ability. In the present work,
QSAR models were built using genetic function approxima-
tion (GFA) [28] and genetic partial least squares (G/PLS)
[29] techniques employing both linear and spline options
with the aid of Cerius 2 software [24]. On the other hand, a

3D pharmacophore refers to a collection of chemical fea-
tures in space essential for a desired biological activity. Thus
a 3D pharmacophore model quantitatively determines the
features that are required to obtain optimum activity of the
molecules under study [30, 31] and provides a unique
ligand-based approach for drug design. In the present work,
the 3D pharmacophore model was built using HypoGen
module, implemented in Discovery Studio 2.1 [31]. To
assess the quality of the generated pharmacophore

Table 1 (continued)

42 G OH H 

3.420 2.716 

43* G OH H HO

3.538 3.199 

44* G OH H OH

3.432 2.904 

45 G OH H 
OH

3.201 3.427 

46* G OH H 
H2C

2.991 2.688 

47 G OH H 
H2CH2C

3.071 2.703 

48 G OH H 
H2CH2 HOC

OH 3.229 3.278 

49* G OH OCH3

OHH2CCH

O 2.495 2.286 

50 G OH CH2CH3 CH2CH3 2.387 2.566 

51 G OH 

N
2.620 2.613 

52 G OH 
N

2.444 2.586 

53 G OH 

N O

2.215 2.416 

54 G H H CH2CH=C(CH3)CH3 1.536 1.642 
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hypotheses, cost functions [32] (represented in bit units)
were calculated during hypothesis generation. Further, the
test set compounds were mapped and predicted based on the
best selected pharmacophore model. Besides these, holo-
gram QSAR (HQSAR) model was also developed to deter-
mine the essential molecular fragments contributing to the
optimum activity profile of the molecules. HQSAR [33, 34]
is a modern 2D QSAR approach based on specialized mo-
lecular fragments providing an extended form of fingerprint
encoding all possible molecular fragments which include
linear, branched, cyclic and overlapping features of the
molecules. Each molecule in a training set is broken down
into several unique fragments which are arranged to form a
molecular hologram representing the molecular fingerprint.
The molecular hologram thus formed takes into account
both the type and number of the various molecular frag-
ments arranged in bins of fixed length array using a pre-
defined set of rules derived from parameters that specify the
size and type of fragment substructures that are to be

encoded. In the present work, HQSAR model was derived
based on various combinations of fragment distinction and
fragment generation parameters for each hologram length
using the Sybyl software [35] and the best PLS model was
selected based on the maximum value of Q2 and a minimum
value of cross-validated standard error (SEcv). The “5%
rule” (the rule allowed addition of latent variable only when
it resulted in an increment in the value of Q2 by 5% or more)
[36] was applied to check the optimum component number.
The final PLS model was thus developed with the optimum
component number based on the specific fragment distinc-
tion parameters, fragment size and bin length.

All the models developed were validated using the internal
validation, external validation and randomization techniques.
The leave-one-out cross-validation technique was employed
for the internal validation of the models. The statistical signif-
icance of the models was assessed based on the value of LOO-
Q2 (cross-validated squared correlation coefficient) which was
calculated using the predicted activity data of each of the
training set compounds that were deleted once in each
of the cycles of LOO cross-validation. To further ascertain
the proximity in the values of the predicted and observed
activity data of the training set compounds, the rm

2 metrics

r2m LOOð Þ and Δr2m LOOð Þ
h i

, developed by the present group

of authors, (Eqs. 1 and 2) were calculated [37, 38].

rm2 ¼ rm
2 þ r=m

2
� �

=2 ð1Þ

Δrm
2 ¼ jrm2 � r=2mj ð2Þ

Fig. 1 Common atoms of the molecules under study that have been
numbered for calculation of Mulliken charges at different levels of theory

Fig. 2 PCA score plot of first three components for the total descriptor
matrix

Table 2 Descriptors used for the present work

Category of
descriptors

Descriptors used

Quantum chemical
descriptors

C1, C2, C3, C4, C5, C6, O7, H8,C9, C10, C11, O12,
N13 (Mulliken charges on the 13 common
atoms of the phenolic derivatives)

Electronic Dipole moment, HOMO (Highest occupied
molecular orbital energy), LUMO (Lowest
unoccupied molecular orbital energy),
Superdelocalizability (Sr).

Topological indices Wiener, Zagreb, Balaban, connectivity indices,
kappa shape indices, E-state parameters

Structural Hbond acceptor, Hbond donor, Rotlbonds,
Chiral centers

Spatial Jurs descriptors, Shadow indices, Radius of
Gyration, Molecular surface area, Density,
Principal moment of inertia, Molecular
volume.

Thermodynamic LogP , AlogP, AlogP98, Molar refractivity
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Here, rm2 ¼ r2 � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r02ð Þp� �

and r=2m ¼ r2 �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r=02ð Þ

p� �
. Squared correlation coefficient values

between the observed and predicted values of the test set
compounds with intercept (r2) and without intercept (r20)
were calculated for determination of rm

2. Change of the axes
gives the value of r/0

2 and the r/m
2 metric was calculated

based on the value of r/0
2.

Further, the external predictive ability of the models was
assessed based on the predictions of the test set compounds.
The external predictive parameter (Rpred

2) [39, 40] thus calcu-
lated reflect the ability of the models to predict the activity

of new series of molecules belonging to the same class. The

calculation of the rm
2 metrics for the test set data

r2m testð Þ and Δr2m testð Þ
h i

additionally estimated the fitness be-

tween the values of the predicted and the corresponding
observed activity data. The overall performance of the
QSAR models was also checked using the overall validation

parameters like rm2
overallð Þ and Δrm2

overallð Þ . The rm
2 metrics

have also been used by other groups of authors [41, 42] and

also implemented in the freeware CORAL [43]. The robust-

ness of the models was checked based on the randomization

Fig. 3 Schematic representation of different QSAR techniques performed in the present study
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technique where the activity data of the training set
molecules was scrambled keeping the descriptor matrix
unchanged and new models were built based on the
permuted activity data. For a robust model, the squared
correlation coefficient (R2) of the non-randomized model
exceeds the average correlation coefficient of the ran-
domized model (Rr

2) by far. In case of the QSAR mod-
els, process randomization (the response parameter was
permuted keeping the total descriptor matrix unchanged
followed by variable selection) was performed at 90%
while the model randomization (the Y variable was
scrambled based on the unaltered model descriptors only)
was performed at 99% confidence level followed by
calculation of the cRp

2 parameter [40] that penalizes
model R2 for small differences in the values of R2 and
Rr

2. Additionally, Fischer randomization technique at
95% confidence level was employed to judge whether
the pharmacophore model was a significant one or a
mere outcome of chance only.

Results and discussion

The developed QSAR models were analyzed to estimate the
structural prerequisites of the molecules in order to exhibit
optimum anti-lipid peroxidative activity. The statistical results
of the different types of QSAR models developed in the
present work are summarized in Table 3. Although all the
different models yielded statistically significant results, the
GFA model developed using the spline option displayed the
most satisfactory results for all the internal and external vali-
dation metrics. Besides these, the 3D pharmacophore model
and the HQSAR model are also analyzed in Table 3. Table 1
also summarizes the calculated/predicted activity of the mol-
ecules based on the most significant models developed here.

GFA model developed using the spline option

The GFA-spline model, being the most satisfactory one
among all the developed models, has been analyzed further.

pC ¼ 33:1þ 1:88� C4 �3:081ð Þ þ 2:82� HOMO �0:412ð Þ
þ0:271� AtypeH 50 �0:053ð Þ � 0:112� < AtypeH 46� 28 > �0:021ð Þ
þ0:446� < 1� AtypeC 5 > �0:097ð Þ
ntraining ¼ 41;F dfð Þ ¼ 50:78 5; 35ð Þ;R2 ¼ 0:879;Q2 ¼ 0:841; rm2

LOOð Þ ¼ 0:745;

Δrm2
LOOð Þ ¼ 0:115; ntest ¼ 13;R2

pred ¼ 0:710; rm2
testð Þ ¼ 0:585;Δrm2

testð Þ ¼ 0:139;

rm2
overallð Þ ¼ 0:748;Δrm2

overallð Þ ¼ 0:141

ð3Þ

Here, ntraining and ntest refer to the number of compounds
in the training and test sets respectively. Besides these, R2

refers to the squared correlation coefficient and F indicates
the variance ratio at a specified degree of freedom (df). The
threshold value for all the parameters exceptΔrm

2 is 0.5 and
for the Δrm

2 parameter, the value should be less than the
stipulated value of 0.2. All the internal and external valida-
tion parameters for the developed model bear statistically
significant values that lie within the acceptable limit.
Predictive potential of the developed model in terms of
internal and external validation tests is reflected from the
acceptable values of the Q2 (0.841) and Rpred

2 (0.710)
metrics respectively. Further, satisfactory values for all
the rm

2 metrics account for least possible deviations of
the predicted activity data from the corresponding ob-
served ones.

The descriptors thus appearing in Eq. 3 obey the follow-
ing order of significance based on their standardized coef-
ficients: (a) HOMO, (b) C4, (c) <AtypeH_46-28>, (d)
AtypeH_50 and (e) <1-AtypeC_5>. The HOMO descriptor
refers to the highest occupied molecular orbital energy
which is crucially important in governing molecular reac-
tivity and properties. The HOMO energy refers to the ability
of the molecules to donate electrons during bond formation

and thus measures the nucleophilicity of the molecules.
Since the value of the HOMO descriptor of a compound
bears negative value, a positive coefficient for the descriptor
in Eq. 3 denotes an increase in the anti-lipid peroxidative
ability of the molecules for less negative values of the
HOMO descriptor. This is well evident in case of compound
nos. 20, 24, 26 and 30 that bear low negative values for the
HOMO descriptor and thereby exhibit higher activity range.
On the contrary, least activity profile of compound no. 12
may be attributed to the maximum negative value for the
HOMO descriptor. Again, a reduction in the negative value
of the HOMO descriptor refers to a decrease in nucleophi-
licity of the molecule with a subsequent increase in the
electrophilic nature. Thus a decrease in the nucleophilic
character of the antioxidant molecule favors their interaction
with the electron rich reactive free radicals. The second
important descriptor belongs to the class of quantum chem-
ical descriptors and refers to the charge on C4 atom calcu-
lated using the Hartee-Fock method at the HF 6-31 level of
theory [23]. A positive coefficient of the charge descriptor
denotes that the anti-lipid peroxidative activity of the
molecules is favored with an increase in positive charge
on the C4 atom as in the case of compound nos. 20, 23
and 25. However, compound nos. 1, 3 and 5 having
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negative charge on C4 atom exhibit lowest activity
profile.

The various atom type descriptors signify the contribu-
tion of the different fragments to the hydrophobicity profile
of the molecules. AtypeH_46 refers to an atom centered
fragment descriptor measuring the number of fragments
bearing hydrogen atom attached to a sp3 hybridized carbon
atom (C0

sp
3) having no heteroatom (denoted as X represent-

ing O, N, S, P, Se, and halogens) attached to the next carbon.
Thus a negative coefficient for the <AtypeH_46-28> de-
scriptor indicates that the activity data of the molecules
increase with a decrease in the value of the spline term as
evident from a decrease in the number of AtypeH_46 frag-
ments. The spline function, <AtypeH_46-28>, exerts zero
contribution for values of the AtypeH_46 parameter lower
than that of the knot of the spline, i.e., 28 since a negative
value within a spline term denotes zero contribution of the
corresponding descriptor [28]. Compound nos. 23, 24, 25
and 26 having zero values for the <AtypeH_46-28> descrip-
tor show maximum activity range. However, moderate ac-
tivity profile of compound nos. 34, 35, 45 and 48 is
attributed to the unfavorable values of the higher ranking
descriptors, even though these compounds bear zero values
for the <AtypeH_46-28> descriptor. On the contrary, al-
though having non-zero values for the <AtypeH_46-28>
descriptor, compound no. 30 exhibits high activity range
due to the acceptable values of the more significant HOMO
descriptor. AtypeH_50 refers to an atom centered fragment
descriptor which measures the number of fragments bearing
hydrogen atom attached to a heteroatom. A positive coeffi-
cient of the AtypeH_50 descriptor indicates that an increase
in the number of fragments comprising of a hydrogen atom
attached to a heteroatom favors the activity profile of the
molecules. Compound nos. 34, 35, 45 and 48 although
bearing maximum values for the AtypeH_50 descriptor
exert moderate activity profile that may be attributed to large
negative values and reduced positive values for the HOMO
and C4 descriptors respectively having higher weightage.
Additionally, compound nos. 24, 26 and 30 attaining ac-
ceptable values for all the significant descriptors bear a
maximum activity profile. Compound no. 24 although bear-
ing moderate values for the C4 and AtypeH_50 descriptor,
shows maximum activity due to the ideal values of the
remaining more significant descriptors. AtypeC_5 is another
atom centered descriptor providing a measure of the number
of fragments bearing sp3 hybridized carbon atom substituted
with a heteroatom (CH3X). As suggested by Eq. 3, the
activity of the molecules improves with a decrease in
the number of such fragments. Since the knot of the
spline is 1, it may be inferred that total absence of such
fragments favor the activity profile of the molecules.
However, compound nos. 1, 6, 9, 10, 12, 21 and 36
although lacking the CH3X fragment lies in the lower

activity domain due to the inappropriate values of the
other more significant descriptors.

Thus the model describes that the prime important factor
governing the activity profile of the molecules is their HO-
MO energy, indicating an increase in activity with a de-
crease in the nucleophilic character of the molecules.
Additionally, reduced positive charge or negative charge
on the C4 atom adversely affects the activity profile of the
molecules. Besides these, specific molecular fragments also
influence the optimal activity of the molecules. Decrease in
the number of fragments bearing hydrogen atom attached to
a sp3 hybridized carbon atom (Csp

3) having no heteroatom
attached to the next carbon and those bearing sp3 hybridized
carbon atom substituted with a heteroatom (CH3X) are
conducive for the anti-lipid peroxidative activity of the
molecules. Conversely, an increase in the number of atom
centered fragments bearing hydrogen atom attached to a
heteroatom (-OH) further enhances the activity profile of
the molecules.

3D pharmacophore model

A set of 10 pharmacophore hypotheses (Table 4) were
developed using 41 training set compounds based on the
conformers obtained using the BEST method of conformer
generation. All the hypotheses yielded acceptable results in
terms of cost functions and correlation coefficients. The
values of fixed cost and null cost, expressed in bits, differed
significantly from each other by 211.801 bits and such a
difference implies existence of more than 90% chance of
true correlation for the developed 3D pharmacophore. As
required for a satisfactory hypothesis, the value of total cost
of each hypothesis was close to the fixed cost values (Table 4).

Table 4 Results obtained from the Pharmacophore Hypotheses using
BEST method

Hypothesis
no

Total
cost

Correlation (R) Features

1 205.001 0.778 HBA HBA HBD

2 212.261 0.756 HBA HBA HYDROPHOBIC

3 212.822 0.786 HBA HBA HYDROPHOBIC

4 213.59 0.788 HBA HBA HYDROPHOBIC

5 214.44 0.751 HBA HBA HBA

6 215.545 0.747 HBA HBA HYDROPHOBIC

7 216.622 0.752 HBA HBA HYDROPHOBIC

8 222.153 0.726 HBA HBA HYDROPHOBIC

9 222.709 0.728 HBA HBA HBA

10 228.867 0.710 HBA HBA HBD

Configuration cost: 15.690

Fixed cost: 113.855

Null cost: 325.656
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Again good overall correlation between the observed and
calculated activity data was implicated from the correlation
coefficients of the 10 hypotheses which ranged between
0.788-0.710. Moreover, a value of configuration cost much
lower than the threshold of 17 accounts for the lack of any
chance correlation in the developed hypotheses. Out of the 10
generated hypotheses, six revealed the importance of a com-
bination of three pharmacophore features (HBA, HBA, HY).
Two other hypotheses consisted of a different combination of
three pharmacophore features (HBA, HBA, HBD).The
remaining two comprised of a repetition of three hydrogen
bond acceptor features (HBA, HBA, HBA). Further, the fit-
ness of the developed pharmacophore models was checked
using the Fischer validation technique at the 95% confidence
level. For hypothesis 2, the value of the average correlation
coefficient of the randomized models (Rr) was much lower
than the corresponding correlation coefficient (R) of the
unrandomized matrix (Rr00.461, R00.756), implicating the
robustness of the developed model and denoting the existence
of a true correlation. Further, the randomization results
obtained for the cost functions showed that the total cost for
hypothesis 2 was much closer to the fixed cost than that of the
null cost as compared to values obtained based on the scram-
bled activity data. Thus, the randomization results additionally
proved lack of any chance correlation for hypothesis 2. Sub-
sequently, hypothesis 2 (Fig. 4) was selected as the best-
ranking pharmacophore and was analyzed further.

Three different chemical features are displayed in
hypothesis 2: HBA, HBA and HY. The hydrophobic feature
maintains a distance of 6.233 Ǻ from one of the hydrogen
bond acceptor groups while the HBA features are separated
from each other by 7.702Ǻ (Fig. 4a). The vectors for the
HBA features indicate the direction of formation of the
hydrogen bond between the electronegative atom of the
antioxidant molecules and the electropositive hydrogen
atom of the free radicals. Additionally, the hydrophobic
feature denotes the regions favorable for substitution by

hydrophobic groups. The existence of hydrogen-bond
acceptor groups in the developed pharmacophore indicates
that the molecules function by the mechanism of single
electron transfer followed by deprotonation [44]. Mapping
of the most active compound (compound no. 24) with
the developed pharmacophore (Fig 4b) revealed that the
presence of ketonic and the ethereal oxygen atoms is well
corroborated with the two hydrogen bond acceptor features
that appeared in the 3D pharmacophore model developed in
this work. The ethereal oxygen for the substituent at C6

position of the parent nucleus and the 0 O fragment for
the amide/carboxylic acid group constitute the primary
hydrogen bond acceptor sites for interaction with the nocive
free radicals. However, the presence of a hydroxy –OH
fragment at the C6 position could also map the HBA feature
and thereby favored the activity profile of the molecules
(compound nos. 42, 45, 47 and 48). Thus these features
constitute the essential structural fragments for molecules
exhibiting optimum anti-lipid peroxidative activity. Besides
these, mapping of the parent phenyl moiety with the
hydrophobic feature implies its significance in imparting
the necessary biological activity to the molecules. Mol-
ecules bearing hydrophobic substituents develop an area
of transient electron deficiency [45], which may in turn
interact with nearby free radicals that have transient
electron-rich areas. Compound nos. 20, 23, 24 and 25
bearing all the essential features were efficiently mapped
by the pharmacophore model developed in hypothesis 2.
On the contrary, compound nos. 1, 3, 5 and 12 lacking the
necessary spatial orientation of the molecule could not fit
accurately into the developed pharmacophore and thus
exhibited poor activity profile. Again, the absence of the
essential ethereal linkage in the parent moiety accounted for
the poor mapping and subsequently reduced activity profile of
compound no. 54.

The pharmacophore was further validated based on its
external predictive ability. Here the remaining 13 test set

Fig. 4 Pharmacophore
obtained from hypothesis 2 (a)
monitoring the distances among
the different features and (b)
mapping the most active
compound (compound no. 24)
to the developed
pharmacophore. [Shown are
hydrophobic group (cyan) and
hydrogen bond acceptor (green)
features with vectors in the
direction of putative hydrogen
bonds]
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molecules were mapped based on the model obtained in
hypothesis 2. Based on the estimated activity data of the
test set molecules, the value of predictive R2 (Rpred

2) was
determined. Existence of a good overall correlation between
the observed and predicted activity data was reflected in the
value of the Rpred

2 (0.568) parameter which was much higher
than the threshold value of 0.5. Further, the proximity between
the observed and the predicted activity data was checked
based on the value of the rm2

testð Þ and Δrm
2 metrics. Close

fitness between the observed and predicted activity data is
ensured more precisely by values of these parameters higher
than the threshold of 0.5 and lower than the optimum value of
0.2 respectively compared to the traditional parameter of
Rpred

2. Acceptable values for these parameters ( rm2
testð Þ 0

0.516 and Δrm
200.166) for the selected hypothesis indicates

that the pharmacophore obtained reflects statistical signifi-
cance and bears improved external predictive potential.

Development of HQSAR model

The results of the HQSAR analysis are reported in Tables 5,
6 and 7. The analyses were performed based on the training
set molecules and optimization of the fragment features and
the hologram length was fixed based on the maximum Q2

and minimum cross-validated standard error (SEcv) for dif-
ferent PLS runs. Initially the best fragment combination [A
(atom type), B (bond type) and D&A (donor and acceptor)]
was selected using the default fragment length followed by
the selection of the most suitable fragment size. The frag-
ment size and the fragment combination thus optimized
were utilized for the selection of the significant hologram
length and the component number was optimized using the
5% rule. The “5% rule” was employed to reduce the noise
and obtain a more robust model. The final model was
obtained by repeating the analysis using the specific frag-
ment contribution, fragment size (5-9), hologram length
(307) and optimum component number (4). The model thus
obtained was validated externally using the test set mole-
cules and the activity predicted for the test set molecules

was correlated with the observed activity data thereby yield-
ing a significantly high value for the Rpred

2 parameter

(0.736). The acceptable values for the rm
2 metrics (rm2

testð Þ
0 0.605 and Δrm

200.168) further confirmed a close prox-
imity between the observed and predicted activity data.
Existence of a high degree of external predictive potential
and absence of any chance correlation was thus reflected
from the acceptable values for all the internal and external
predictive parameters.

The results of the HQSAR analysis are represented in the
form of contribution map (Fig. 5) where the color of the
atom or fragment determines its overall contribution to the
activity profile of the molecules under study. The contribu-
tions of the different colors are listed as follows: (i) white
color indicates an average contribution ranging from -0.097
to 0.102, (ii) red color denotes unfavorable contribution and
ranges below -0.034, (iii) red-orange color also implicates
similarly bad impact ranging between -0.034 to -0.020, (iv)
yellow indicates a good contribution of 0.102 to 0.153 and
(v) green signifies maximum contribution of 0.254 and
above. For the purpose of discussion, contribution of the
different fragments with respect to the most active com-
pound (compound no. 24) has been shown here. The green
colored fragments indicating maximum contributing frag-
ments of the parent moiety include: (i) the ethylene (-CH 0
CH-) linkage of the cinnamic acids/amides and (ii) the
ketonic (0O) fragment of the acid/amide derivatives. Be-
sides these, some of the methyl hydrogen atoms of the t-
butyl fragment also contribute significantly to the enhanced
activity profile of the molecules. The fragments contributing
moderately (yellow colored) to the activity profile constitute
C5 atom of the parent moiety and the secondary carbon atom

Table 5 HQSAR analysis for various fragment distinction using de-
fault fragment size (4-7)

Fragment
distinction

Q2 SEcv R2 SE LVs Length

A/B 0.518 0.448 0.838 0.260 6 97

A/B/C 0.439 0.470 0.700 0.344 4 83

A/B/H 0.365 0.515 0.795 0.292 6 151

A/B/C/H 0.369 0.513 0.792 0.294 6 59

A/B/D&A 0.563 0.421 0.835 0.259 5 257

A/B/C/ D&A 0.510 0.439 0.782 0.293 4 257

Table 6 HQSAR analysis for the influence of various fragment sizes
using the best fragment distinction (A/B/D&A)

Fragment size Q2 SEcv R2 SE LVs Length

2-6 0.481 0.446 0.714 0.331 3 151

3-7 0.556 0.424 0.830 0.262 5 257

4-8 0.581 0.412 0.839 0.256 5 257

5-9 0.629 0.393 0.871 0.232 6 307

6-10 0.623 0.396 0.864 0.238 6 307

7-11 0.563 0.427 0.869 0.234 6 307

8-12 0.522 0.447 0.868 0.234 6 151

Table 7 Selection of best model with less number of LVs using 5%
rule

LVs Q2 SEcv R2 SE Length % increase in Q2

6 0.629 0.393 0.871 0.232 307 3.624

5 0.607 0.399 0.845 0.251 307 3.584

4 0.586 0.404 0.819 0.267 307 –
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of the propoxy linkage attached at the C2 position of the
parent phenyl moiety. Red coloration of the carbon atom,
ortho to one of the t-butyl groups, in phenyl ring signifies its
worst impact toward activity profile of the compounds.
Compound nos. 23, 24, 25, 26 and 30 bearing all the
necessary substitutions exhibit maximum antioxidant activ-
ity. Again, the high activity profile of compound nos. 42, 45
and 48 is represented by their corresponding hologram map
showing extensive contribution of the carbon atoms of the
parent phenyl moiety of the cinnamic acid/ amide deriva-
tives toward their anti-lipid peroxidative activity status.
Compound nos. 1, 3, 5, 6, 9 (lacking the -CH 0 CH-
fragment in the parent nucleus), 12 (lacking the ene frag-
ment of the parent moiety and bearing several unfavorable
substitutions) and 54 (deficient in the essential substitutions)
exhibit lowest range of activity profile.

Overview and conclusions

Based on the molecules belonging to the class of hydrox-
ycinnamic acid and caffeic acid derivatives, QSAR models
were developed to quantitatively define the relationship
between molecular structure and their activity profile. Out
of the total set of 54 compounds, 41 were utilized as the
training set for model development and subsequent internal
validation of the models. The remaining 13 molecules were
classified as the test set for external validation of the devel-
oped models. The essential molecular fragments and their
degree of contribution to the anti-lipid peroxidative activity
of the molecules were determined from the HQSAR model.
Additionally, the crucial features constituting the pharmaco-
phore of the molecules were analyzed based on the 3D
pharmacophore model developed. Although these models
could qualitatively analyze the prime structural attributes,
elucidation of the quantitative relationship between the mo-
lecular structure and their activity data was done using the
descriptor based QSAR models developed using different
chemometric tools (GFA, G/PLS). Among the different
QSAR models developed in the present work, the GFA-
spline model yielded the most satisfactory results for all
the validation parameters and the inferences drawn from
this model well corroborated with the HQSAR and 3D
pharmacophore models. Figure 6 depicts the overall infer-
ences drawn from the different models developed in this
work. Both the HQSAR and the 3D pharmacophore models
implicate the importance of the ketonic oxygen fragment of
the acid/amide functional group attached to the ethylene

Fig. 5 Contribution map obtained using the HQSAR technique based
on compound no. 24 (see text for details)

Fig 6 Schematic diagram
showing different features at
various positions favoring the
anti-lipid peroxidative activity
profile of the molecules
obtained using different QSAR
techniques
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carbon which is in turn linked to the C4 position of the
phenyl ring. Thus the C4 atom and the ethylene chain
also constitute the essential structural features for the
molecules so that the hydrogen bond acceptor fragment,
0O, lies at an optimum distance from the remaining
pharmacophoric features. The observation ideally
matches with the interpretation of the QSAR model
which signifies the importance of the charge on the C4

atom while the HQSAR model emphasizes the utility of
the ethylene fragment. The ketonic fragment constituting
the hydrogen bond acceptor feature being in conjugation
with the 9, 10-double bond enhances the electron trans-
fer ability and the free radical scavenging action of the
molecules through electron delocalization [46]. Molecu-
lar electrostatic potential surface (wire mesh) of the
energy minimized geometry of the most active com-
pound (24) is shown in Fig. 7 which indicates increased
charge density over the 0 O (keto) fragment and the
ethereal oxygen. Thus, it again reflects the ability of
these fragments to serve as hydrogen bond acceptor
groups. These fragments withdraw electrons from the
rest of the molecule by delocalization mechanism de-
creasing the electron density on the rest of the molecu-
lar entity which in turn facilitates their interaction with
the electron rich free radicals. Again, based on the
interpretation of the HOMO descriptor appearing in the
QSAR model, it may be further inferred that decrease in
nucleophilicity of the molecules facilitates their interac-
tion with the neighboring free radicals. The remaining
hydrogen bond acceptor feature of the 3D pharmaco-
phore maps with the ethereal oxygen linked at the C2

position of the parent phenyl ring. Similar observation is
also noted in the case of the HQSAR model that indi-
cates the significant contribution of the substituent at-
tached to the phenyl ring through ether linkage at the

C2 position. Besides these, the parent phenyl ring map-
ping the hydrophobic feature serves as an electron defi-
cient center that effectively interacts with the electron
rich sites of the reactive free radicals and thereby facil-
itates their neutralization. The electron deficient nature
of the phenyl ring is also reflected from the QSAR
model that infers that a positive charge on the C4 atom
favors the activity of the molecules. In addition to these,
the QSAR model also infers that an increase in the
number of hydrogen fragments attached to a heteroatom
and absence of sp3 hybridized carbon fragments substi-
tuted with a heteroatom are conducive for the anti-lipid
peroxidative activity of the molecules. Further, a de-
crease in the number of hydrogen fragments attached
to a tetrahedral carbon lacking any heteroatom substitu-
ent on the α-carbon results in an increment in the
activity data of the molecules.

The QSAR models thus developed determine the crucial
structural attributes of the molecules, belonging to the class of
hydroxycinnamic acid and caffeic acid derivatives, which
constitute their prime prerequisites in order to exhibit
optimum lipid peroxidation inhibitory activity. All the models
developed have been subjected to rigorous validation
procedures. Acceptable internal validation parameters account
for the high internal predictivity of the models, while
improved external validation statistics for all the developed
models implicate increased external predictive potential of the
models. Thus the QSARmodels may be efficiently utilized for
prediction of lipid peroxidation inhibitory activity of untested
molecules belonging to the class of cinnamic acid derivatives.
Moreover, the 3D pharmacophore model and the HQSAR
model developed in the present work may serve as efficient
3D query tools that may be utilized for screening of large
databases and selecting the molecules bearing the necessary
structural features for exhibiting optimal activity.

Fig. 7 Molecular electrostatic
potential surface (wire mesh) of
the energy minimized geometry
of compound no. 24 (blue
points in the surface indicate
negatively charged areas and
red points indicate positively
charged areas)
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